John Z. Kiss

John Z. Kiss

Professor & Dean of the College of Arts & Sciences

(336) 334-5391
312 Eberhart Building


Plant physiology and development; space biology


Ph.D., Rutgers University


Plants rely on sophisticated mechanisms to interpret the constant bombardment of incoming signals so they can adjust their growth accordingly. In my laboratory, we are interested in the cellular and molecular mechanisms of gravitropism and phototropism (directed growth in response to gravity and light, respectively). In the gravitropism project, we have been studying how statoliths (structures that function in graviperception) interact with the cytoskeleton in gravitropic signal transduction. In terms of phototropism, we have been examining the role of the photosensitive pigment phytochrome in the regulation of this tropism in both roots and stems. We have had a series of past spaceflight projects which used microgravity as a tool to understand the mechanisms of tropistic responses. Currently, we have been approved by NASA for several new experiments on the International Space Station to investigate plant tropisms. Our long-term goal is to understand how plants integrate sensory input from multiple light and gravity perception systems.

John’s publications and research profile are available at Google Scholar »

Recent Publications:

Johnson C.M., A. Subramaniana, S. Pattathil, M.J. Correll, J.Z. Kiss. 2017. Comparative transcriptomics indicate changes in cell wall organization and stress response in seedlings during spaceflight. American Journal of Botany 104: 1219-1231.

Vandenbrink J.P., R. Herranz, F.J. Medina, R.E. Edelmann, J.Z. Kiss. 2016. A novel blue-light phototropic response is revealed in roots of Arabidopsis thaliana in microgravity. Planta 244:1201–1215

Vandenbrink J.P., J.Z. Kiss. 2016. Space, the final frontier: a critical review of recent experiments performed in microgravity. Plant Science 243:115–119.

Dauzart A.J.C, J.P. Vandenbrink, J.Z. Kiss. 2016. The effects of clinorotation on the host plant, Medicago truncatula, and its microbial symbionts. Frontiers in Astronomy and Space Sciences 3:3

Kiss J.Z. 2015. Conducting plant experiments in space. Methods in Molecular Biology 1309: 255-283. 4939-2697- 8_19.

Vandenbrink J.P., J.Z. Kiss, R. Herranz, F.J. Medina. 2014. Light and gravity signals synergize in modulating plant development. Frontiers in Plant Science 5:563. DOI:10.3389/fpls.2014.00563.

Kiss J.Z. 2014. Plant biology in reduced gravity on the Moon and Mars. Plant Biology 16(S1): 12–17.

Kiss J.Z., G. Aanes, M. Schiefloe, L.H.F. Coelho, K.D.L. Millar, R.E. Edelmann. 2014. Changes in operational procedures to improve spaceflight experiments in plant biology in the European Modular Cultivation System. Advances in Space Research 53: 818–827.

Correll M.J., T.P. Pyle, K.D.L. Millar, Y. Sun, J. Yao, R.E. Edelmann, J.Z. Kiss. 2013. Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes. Planta 238: 519-533.

Millar K.D.L., J.Z. Kiss. 2013. Analyses of tropistic responses using metabolomics. American Journal of Botany 100: 79-90.

Kiss J.Z., K.D.L. Millar, R.E. Edelmann. 2012. Phototropism of Arabidopsis thaliana in microgravity and fractional gravity on the International Space Station. Planta 236:635–645.

Hopkins J.A., J.Z. Kiss. 2012. Phototropism and gravitropism in transgenic lines of Arabidopsis altered in the phytochrome pathway. Physiologia Plantarum 145: 461–473.

Dr. Kiss on NASA TV