Publications | The Adamson Research Group


  1. Adamson, A. and A. Shearn. 1996. Molecular Genetic Analysis of Drosophila ash2, a Member of the Trithorax Group that is Required for Imaginal Disc Pattern Formation. Genetics 144:621-633.
  2. Adamson, A. and S. Kenney. 1998. Rescue of the Epstein-Barr Virus BZLF1 Mutant, Z(S186A), Early Gene Activation Defect by the BRLF1 Gene Product. Virology 251:187-197.
  3. Adamson, A. and S. Kenney. 1999. The Epstein-Barr Virus BZLF1 Protein Interacts Physically and Functionally with the Histone Acetylase CREB-Binding Protein. Journal of Virology 73:6551-6558.
  4. Adamson, A., D. Darr, E. Holley-Guthrie, R. A. Johnson, A. Mauser, J. Swenson, and S. Kenney. 2000. Epstein-Barr Virus Immediate-Early Proteins BZLF1 and BRLF1 Activate the ATF2 Transcription Factor by Increasing the Levels of Phosphorylated p38 and c-Jun N-Terminal Kinases. Journal of Virology 74:1224-1233.
  5. Adamson, A. and S. Kenney. 2001. The Epstein-Barr Virus (EBV) Immediate-Early Protein, BZLF1, is SUMO-1-modified and disrupts PML bodies. Journal of Virology 75:2388-2399.
  6. Adamson, A., N. Wright, and D. LaJeunesse. 2005. Modeling Early Epstein-Barr Viral Infection in Drosophila melanogaster: The BZLF1 Protein. Genetics 171:1125-1135. 
  7. Adamson, A.  2005.  Epstein-Barr virus BZLF1 protein binds to mitotic chromosomes.  Journal of Virology 79(12):7899-7904.
  8. LaJeunesse, D., K. Brooks, and A. Adamson. 2005. Epstein-Barr virus immediate-early proteins BZLF1 and BRLF1 alter mitochondrial morphology during lytic replication. Biochemical and Biophysical Research Communications 333:438-442.
  9. Adamson, A.  2005. Effects of SUMO-1 upon Epstein-Barr Virus BZLF1 Function and BMRF1 Expression. Biochemical and Biophysical Research Communications 336:22-28.
  10. Bowling, B. and A. Adamson. 2006. Functional interactions between the Epstein-Barr virus BZLF1 protein and the promyelocytic leukemia protein.  Virus Research 117:244-253.
  11. Adamson, A., Chohan, K., Kincaid, J., and LaJeunesse D. 2011.  A Drosophila Model for Genetic Analysis of Influenza Viral/Host Interactions.  Genetics 189: 495-506.
  12. Adamson, A., and LaJeunesse D.  2012. A Study of Epstein-Barr Virus BRLF1 Activity in a Drosophila Model System. The Scientific World Journal – Cell Biology Domain 2012:1-9.
  13. Adamson, A. 2013. Identification of an N-acetylglucosaminyltranferase-IV as a modifier of Epstein-Barr virus BZLF1 activity. Open Journal of Genetics 3(1) 1-5.
  14. Kohio, H. and A. Adamson. 2013. Glycolytic Control of Vacuolar-Type ATPase Activity: A Mechanism to Regulate Influenza Viral Infection. Virology 444: 301-309.
  15. Adamson, A., B. Le, and B. Siedenburg. 2014. Inhibition of mTOR inhibits lytic replication of Epstein-Barr virus in a cell-type specific manner. Virology Journal 11:110.
  16. Covell, A., Zeng, Z., Wei, J., Adamson A., and LaJeunesse, D. 2017. Alternative SiO2 surface energies direct MCDK epithelial behavior. ACS Biomaterials Science & Engineering, 312, 3307-3317.
  17. Needham, J. and A. Adamson. 2019.  BZLF1 Transcript Variants in Epstein-Barr Virus-Positive Epithelial Cell Lines. Virus Genes 55:779-785.
  18. Adamson, A. 2019. Knockdown of the V1A subunit of the vacuolar V1V0-ATPase proton pump reduces infection by Influenza A virus. Under review.
  19. Adamson, A., Jeffus, D., Davis, A., and Greengrove, E. 2020. Epstein-Barr virus lytic replication activates and is dependent upon MAPK-interacting kinase 1/2 in a cell-type dependent manner. Under review.
  20. Miller, K. and Adamson, A. 2019. Organophosphate Exposure Causes Viral and Cellular Dysregulation in B Lymphocytes. In prep.
  21. Miller, K. and Adamson, A. 2019. Pesticide Exposure Promotes Epstein-Barr Virus-Related Oxidative Stress and Cell Cycle Checkpoint Control Misregulation in B lymphocytes. In prep.